Электроника

 
24 | 09 | 2020

Ген

Ген — элементарная и структурная единица наследственности. Первые умозрительные догадки о том, что передачу потомкам признаков родителей обеспечивает совокупность отдельных (дискретных) наследственных задатков, высказывали еще в древности Демокрит, Гиппократ и др. Однако строгое доказательство существования элементарных наследственных факторов было получено в 1865 г. чеш. естествоиспытателем И. Г. Менделем, четко сформулировавшим гипотезу о дискретных наследственных факторах, каждый из к-рых управляет развитием строго определенного наследственного признака и в своей активности не зависит от других наследственных факторов. Мендель подразделил гены на доминантные (не зависящие в своем проявлении от других генов) и рецессивные (подавляемые доминантными). С 1909 г. эти наследственные задатки по предложению дат. ученого У. Иогансена стали именовать генами. В 1910—1913гг. амер. биолог Т. Морган и его ученики доказали, что Г. линейно расположены в особых структурах клеточного ядра — хромосомах и что находящиеся в одной хромосоме Г. передаются потомкам совместно, образуя единую группу сцепления. Т. о., число групп сцепления у любого организма равно числу хромосом в его клетках. Была обнаружена также способность хромосом обмениваться друг с другом участками большей или меньшей длины. Перед созреванием половых клеток парные хромосомы сближаются, образуют единую структуру, и в этот момент может произойти их перекрест с последующим разрывом отдельных хромосом и направленным соединением концов в месте разрыва (так наз. кроссинговер), что и приводит к обмену участками между хромосомами. Было установлено, что при кроссинговере разрыв хромосом происходит в межгенных участках, так что отдельные Г, передаются целиком, не дробясь. После открытия в 1899 г. рус. ученым С. И. Коржинским и в 1900—1901 гг. голл. ученым Г. де Фризом процесса изменения отдельных Г. (мутаций) в естественных условиях, ав 1925—1928 гг.— возможности получения искусственных мутаций под действием радиации и химич. веществ создались условия для изучения изменчивости отдельных Г„ При этом было подтверждено, что отдельные Г. изменяются, мутируют как целое. Т. о., сложилось представление о Г. как элементарной единице наследственного материала, к-рая ведет себя как целое при мутировании и передается целиком при кроссинговере. Однако вскоре были получены данные, доказывающие дробимость Т., как в 116 ГЕН расположения нуклеотидов в Г. должна оставаться неизменной. В противном случае под контролем измененного Г. будет синтезироваться белок с нарушенной структурой и измененной функцией или даже синтез какоголибо белка окажется невозможным. При этом установлено, что изменение (перестановка или замена) даже одного нуклеотида в Г. может вести к резкому изменению свойств кодируемого им фермента, что в свою очередь может обусловить возникновение наследственного заболевания (см. Наследственные болезни). В 60-е гг. 20 в. благодаря успехам молекулярной генетики был полностью определен точный состав всех троек нуклеотидов (кодонов), кодирующих 20 основных аминокислот, а также выяснены закономерности функциони- процессе мутаций (эксперименты школы сов. генетика А, С. Серебровского и его учеников Н. П. Дубинина и др. в 1929—1934 гг.), так и при обмене участками хромосом во время кроссинговера. В 1936 г. в экспериментах по удвоению Г. в результате мутаций амер. ученый Г. Меллер (приехавший в эти годы работать в СССР ) совместно с сов. учеными А. А. Прокофьевой-Бельговской и К. В. Косиковым впервые смогли дать линейную оценку размера участка хромосомы, занятого одним Г. В эти же годы, изучая влияние радиации на наследственный аппарат, сов. ученый Н. В. Тимофеев-Ресовский, нем. ученые М- Дельбрюк и К. Циммер дали первый приближенный расчет объема Г. Химическое строение и функционирование гена. Несмотря на значительные успехи в исследовании Г., его химич. строение и физич. природа были неизвестны. До конца 40-х гг. оставалось неясным, что же собой представляет вещество наследственности, хотя в 1944 г. амер. ученые Т. Эйвери и др. установили, что у бактерий наследственную информацию несут молекулы дезоксирибонуклеиновой к-ты — ДНК (см. Нуклеиновые кислоты). Лишь после открытия в 1953 г. структуры ДНК и описания ее свойств (амер. биолог Д.Уотсон и англ. физик Ф. Крик) было окончательно доказано, что Г. сосредоточены в молекуле ДНК. К этому же времени было установлено, что в генах содержится информация о точном строении ферментных белков, управляющих всеми реакциями в живых организмах, что каждый Г. занимает отрезок молекулы ДНК и кодирует порядок расположения аминокислот (составных частей белковой молекулы) в полипептидных цепях ферментных и других белков (см. Генетический код). Кодирующие свойства принадлежат составным частям молекулы ДНК — нуклеотидам, а каждой аминокислоте соответствует три последовательно расположенных нуклеотида в ДНК (так наз. триплет, или кодон). Строгое соответствие между последовательностью нуклеотидов в структуре Г. и чередованием аминокислот в кодируемом этим Г. белке было экспериментально установлено в 1964— 1965 гг. Т. о., каждый Г. отличается от другого уникальной, свойственной только ему последовательностью расположения нуклеотидов. Установление этого факта позволило понять молекулярные основы изменения наследуемых признаков как процесса замены, выпадения или дополнительного включения отдельных нуклеотидов (или групп нуклеотидов), а также перемещения участков генов с одного места на другое (см. Мутагенез). Было доказано, что мутации могут возникать в Г. в результате воздействия на организмы как облучения (ионизирующая радиация, ультрафиолетовые лучи, нейтроны и др.), так и разнообразных химич. соединений (мутагенов). В естественных условиях каждый Г. мутирует в среднем у одной из 100 тысяч или миллиона особей в одном поколении. Применение химич. и лучевых мутагенов повышает частоту мутирования в несколько десятков или сотен раз. Для сохранения в поколениях наследственных признаков последовательность рования Г. В результате этих исследований было доказано, что клетка обладает способностью размножать молекулы ДНК, несущие генетическую информацию. Это свойство было названо репликацией. При этом с участием нескольких групп специальных ферментов происходит точное копирование исходной ДНК. Реализацию информации, записанной в Г., представляют следующим образом (рис. 1). На Г. синтезируется его копия в виде молекулы рибонуклеиновой к-ты — так наз. информационная, или иРНК (см. Нуклеиновые кислоты). Этот процесс получил название транскрипции. иРНК соединяется со специальными клеточными образованиями — рибосомами, и при участии другой формы рибонуклеиновой к-ты — так наз. транспорт- Молекула дезоксирибонуклеиновой кислоты (ДНИ) участок ДНИ, занятый одним геном строящаяся молекула и-РНН Синтез копии гена в виде информационной РНН (и-РНН) Освобожденная от гена молекула и-РНН молекула РНН-полимеразы Синтез ферментных белков на и-РНН с помощью рибосом v движущаяся по молекуле и-РНН рибосома синтезируемые молекулы ферментных белков Готовые молекулы ферментов Развитие определенного признака под контролем данного фермента Рис. 1. Схема реализации информации, заложенной в гене. Каждый ген занимает определенный участок в двуспиральной молекуле ДНК и несет информацию о строении определенного белка в организме. Реализация этой информации осуществляется следующим образом: / — при помощи фермента РНК-полимеразы на участке молекулы ДНК, занимаемом одним геном, на одной из ее цепочек строится копия гена в^ виде молекулы информационной РНК, или и-РНК (обозначена пунктирной линией), по мере продвижения по гену молекулы РНК-полимеразы (закрашена черным) длина синтезируемой молекулы и-РНК увеличивается; 2 — по окончании синтеза и-РНК последняя освобождается от молекулы ДНК и может приступить к программированию синтеза белковой молекулы в точном соответствии с информацией, заложенной в данном гене; 3 — к молекуле и-РНК присоединяются специальные клеточные образования — рибосомы; на одной молекуле и-РНК одновременно может быть построено столько молекул белка, сколько рибосом присоединится к ней; по мере продвижения рибосом по и-РНК цепочки синтезируемых молекул белка удлиняются; 4 — синтез белка закончен; 5 — молекулы ферментных белков готовы к управлению биохимической реакцией, обусловливающей развитие определенного признака. ГЕН 117 ной (тРНК), связанной с аминокислотами, в рибосомах происходит синтез соответствующей данному Г. белковой молекулы (процесс трансляции). В конечном итоге оказывается, что последовательность аминокислот в белке, а значит, и его свойства целиком определяются последовательностью (порядком расположения) нуклеотидов в Г. Т. о., согласно современным представлениям, Г. — это участок молекулы дезоксирибо уклеиновой к-ты — ДНК (у некрых вирусов — рибонуклеиновой к-ты — РНК), к-рый определяет порядок расположения аминокислот в первичной структуре какоголибо из белков живой клетки и тем самым обусловливает формирование признаков организма. В 1961 г. франц. ученые Ф. Жакоб и Ж. Моно обнаружили, что Г. функционально неоднородны, что существует две группы Г.: структурные, управляющие синтезом специфических белков (гл. обр. ферментов), и регуляторные, контролирующие деятельность структурных Г. Дальнейшими исследованиями был расшифрован сложный механизм регуляции активности структурных Г. и уточнены некрые детали процесса «считывания» генетической информации (см. М олекулярная генетика). Геном, плазмон, генотип и фенотип. Все организмы на Земле подразделяют на две группы по признаку структурной организации ядра в их клетках. Те многоклеточные и одноклеточные организмы, в клетках к-рых имеется ядро, окруженное специальной ядерной оболочкой, отгораживающей содержимое ядра от цитоплазмы, называют эукариотами (от лат. эу — собственно, карио — ядро). Одноклеточные микроорганизмы, не имеющие четко сформированного ядра, а вместо этого содержащие единственную молекулу ДНК, не связанную с белками, называют прокариотами. У эукариотов, включая человека, в каждой хромосоме содержится одна огромная по длине молекула ДНК, несущая, повидимому, несколько тысяч Г. У прокариотов аналогом хромосомы является единственная в клетке молекула ДНК (к тому же не несущая на себе ядерных белков), в к-рой содержится несколько сотен Г., последовательно располагающихся по длине молекулы. Установлено, что, помимо Г., входящих в состав хромосом, и у эукариотов, и у прокариотов часть генов сосредоточена в более коротких молекулах ДНК, располагающихся в структурах органелл клеток (митохондрий, хлоропластов и др.) и в так наз. плазмидах (половые факторы бактерий, факторы устойчивости к антибиотикам и т. д.), расположенных в цитоплазме клеток. Эти нехромосомные Г. называют также цитоглазматическими Г. Совокупность всех Г., входящих в состав хромосом каждой клетки эукариотов (или в единственную хромосому у прокариотов), без учета цитоплазматических генов, по предложению нем. биолога Г. Винклера (1920), принято называть геномом клетки. В свою очередь совокупность цитоплазматических Г. называют плазмоном (рис. 2). Всю наследственную информацию, присущую организму, включая и Г., сосредоченные в хромосомах, и Г., находящиеся в цитоплазматических Плазмон Генотип Рис. 2. Схема распределения наследственной информации между различными типами генов, составляющих наследственнукпрограмму клетки. Основная часть наследственной информации клетки (более 90%) сосредоточена в хромосомах , расположенных в ядре (/). Совокупность хромосомных генов составляет геном клетки. Остальная часть информации заключена в генах ряда крупных органелл клетки — митохондрий , пластид, включая хлоропласты зеленых растений, и др., а также в мелких клеточных включениях, нередко инфекционной природы, таких как плазмиды . Эти гены составляют так называемый плазмон клетки. Всю совокупность генетической информации, или генетическую программу клетки (либо организма, образованного из этих клеток), называют генотипом клетки (организма). структурах, по предложению У. Ио-ганнсена (1909) называют генотипом клетки. Генотип содержит наследственную программу развития всех видовых и индивидуальных признаков организма. Совокупность всех признаков организма (как внешних, так и внутренних) называют фенотипом. Клетки тела высших организмов и человека имеют двойной набор хромосом (они диплоидны) и, следовательно, содержат два генома. Ряд организмов (низшие растения, некрые насекомые) имеют и во взрослом состоянии только один геном (они гаплоидны). Некрые растительные организмы имеют в своих клетках по 3, 4 и более геномов, т. е. тройной, четверной и более набор хромосом (напр., пшеница, свекла и др.). Такие многоплоидные организмы нередко отличаются по своим внешним признакам, т. е. своему фенотипу. Некрые органы в теле человека также содержат в своих клетках по тройному набору хромосом. В половых клетках (гаметах) диплоидных организмов содержится один геном, т. к. в процессе их созревания парные хромосомы расходятся по разным клеткам. При оплодотворении (см. Размножение) происходит объединение геномов отцовских и материнских половых клеток. Как правило, геномы отцовских и материнских гамет гомологичны (соответственны), но в гибридных организмах такое соответствие отсутствует. Обмен генами между организмами может происходить в результате различных биологич. процессов. Прежде всего он осуществляется во время фор- мирования половых клеток, когда происходит так наз. кроссинговер. В клетках каждого организма содержится по паре каждой из хромосом: одна получена от отца, а другая от матери. Эти хромосомы получили название гомологичных хромосом. Подавляющее большинство генов в этих хромосомах одинаково, а отличия касаются лишь тех генов, к-рые содержат мутации (см. Мутагенез). Перед созреванием половых клеток во всех организмах происходит особое клеточное деление (мейоз). На одной из его стадий гомологичные хромосомы вступают в тесный контакт друг с другом (это возможно, т. к. генный набор и последовательность Г. в этих хромосомах в основном схожи) и иногда обмениваются между собой участками большей или меньшей длины. Гораздо реже наблюдается кроссинговер в обычных (соматических) клетках тела. У микроорганизмов существует много других способов обмена генетич. информацией за счет ряда специальных процессов. Ученые прилагают большие усилия для того, чтобы добиться осуществления этих способов и у высших организмов (см. Инженерия генетическая). Делается это гл. обр. для выяснения природы процессов обмена генетической информацией, происходящих в живой природе, чтобы человек в будущем смог применить их на практике, вводя желаемые Г. в нужные организмы и, напротив, исключая из набора Г. данного организма ненужные или вредные Г., напр, вызывающие заболевания. Конечно, эти целенаправленные манипуляции, несмотря на их исключительную важность как для целей здравоохранения, так и для ряда других отраслей деятельности человека (сельского хозяйства, охраны природы и др.), станут возможными только в будущем, но исследование процессов обмена Г., происходящих в естественных условиях, вопервых, доказывает принципиальную возможность того, что эти процессы действительно осуществляются в природе, а вовторых, позволяют выяснить механизм и детали различных способов обмена Г. Во всяком случае установлено, что процессы обмена Г. имеют важное эволюционное значение, т. к. они позволяют образоваться новым сочетаниям нормальных и измененных Г. Новые комбинации нередко оказываются более жизнеспособными и благоприятными для естественного отбора. В результате отбираются лучшие формы растений, животных и микроорганизмов. Т. о., обмен Г. является важным способом получения измененных форм и играет существенную роль в эволюции (см. Эволюционное учение). Изучение обмена Г. исключительно важно и для понимания причин многих заболеваний. В процессе обмена Г. может исказиться первоначальная генетич. информация и начаться развитие болезненного процесса« Сказан^ ное в полной мере приложимо и к человеку. Так, напр., установлено, что почти каждый человек несет наследств венные задатки измененных признаков^ Эти задатки (измененные Г.) могут рас* полагаться в различных хромосомах, но в результате обмена Г, между разными хромосомами, входящими в пару, может возникнуть такая комбинация, при к-рой в одной хромосоме окажется 118 ГЕН сразу несколько «больных» Г., и это приведет к резкому отягощению наследственными дефектами данной особи. С другой стороны, в результате разрыва хромосом на уровне определенных Г. может быть нарушена правильность генетич. информации, закодированной в данных Г., что также может привести к возникновению наследственной болезни. Как это предотвратить, пока неясно, но вполне очевидно, что без детального изучения как различных способов обмена Г., так и их точного молекулярного механизма, невозможно подойти к управлению этими важнейшими процессами наследственной изменчивости. Известно четыре основных способа обмена Г.: кроссинговер, конъюгация, трансдукция и трансформация. Кроссинговер — наиболее распространенный процесс, обеспечивающий обмен Г. у высших организмов. Буквальный перевод этого слова — перекрест, и, действительно, во время формирования половых клеток, когда удвоенные гомологичные хромосомы попарно сливаются, образуя единую структуру, состоящую из четырех хромосомных нитей, иногда происходит перекрест нитей, заканчивающийся их разрывом и соединением образовав^ шихся концов в новом порядке. В результате происходит перераспределение (рекомбинация) Г. у хромосом. Участки хромосом, содержащие одни или несколько Г., обмениваются с участками другой хромосомы (рис. 3). Еще в начале 20 в. удалось, под микроскопом наблюдать характерную фигуру перекрещенных хромосом (названную хиазмой), затем удалось доказать наличие кроссинговера генетически — по результату перекомбинации признаков у скрещиваемых организмов. Следя за новыми сочетаниями Г. у ;. . , ¦ гомологичные хромосомы Рис. 3. Упрощенная схема обмена участками гомологичных хромосом в результате кроссинговера (перекрест хромосом): / — гомологичные хромосомы (одна получена от отца, другая от матери) перед кроссинговером; 2 — разрыв хромосом в точке их соединения (участок хиазмы); 3 — попарное объединение разорванных фрагментов обеих хромосом;,4 — завершение обме* на участками хромосом. потомков тех организмов, у к-рых произошел кроссинговер, Т. Морган обнаружил важнейшее правило, ставшее основой для создания генетич. карг. Он доказал, что разрыв и воссоединение в новом порядке какихлибо Г. осуществляются тем легче, чем дальше друг от друга в хромосомах они располагаются. Вероятность возникновения разрыва в хромосоме между Г. уменьшается пропорционально уменьшению расстояния между ними (рис 4). В дальнейшем были обнаружены отклонения от простых закономерностей кроссинговера и было показано, что частота этого процесса не всегда зависит только от линейного расстояния между Г. Так, напр., если на участке между двумя Г. происходит сразу двойной или множественный обмен, то частота перекомбинации этих Г. уменьшается. С другой стороны, при изучении кроссинговера между близко лежащими Г. было выявлено резкое увеличение частоты этого процесса, непропорциональное расстоянию между этими Г. (так наз. отрицательная интерференция). В большинстве случаев кроссинговер происходит между участками парных хромосом. При этом, как правило, участки, к-рыми обмениваются хромосомы, оказываются одинаковой длины. Но иногда разрывы хромосом, вступающих в кроссинговер, происходят не в строго идентичных точках, и тогда наступает неравный кроссинговер. При этом одна из хромосом, участвующих в кроссинговере, получает дополнительный генетич. материал. Происходит то, что было названо генетиками дупликацией (удвоением) генетич. .материала. Есть обоснованные предположения, что процесс неравного обмена Г. имел особенно большое значение на первых этапах развития жизни на Земле. Выяснение правила зависимости частоты перекреста между Г. от расстояния между ними помогло разработать простой способ определения порядка расположения Г. в хромосомах и определения относительного расстояния между ними. Для этого используют метод так наз. трехфакторного, или трехгенного, скрещивания (рис. 5). Произвольно выбирают три какихлибо гена, про к-рые известно, что они расположены в одной хромосоме, и сначала определяют частоту перекреста для первого и второго из этих генов, затем для второго и третьего генов, и, наконец, проводят последнее определение — выясняют частоту перекреста между первым и третьим генами. Полученные в результате этих трех определений цифры однозначно определяют как порядок расположения данных генов, так и относительное расстояние между ними. Приняв любой произвольный масштаб, можно размеси тить эти гены на отрезке прямой линии, называемой генетической картой. Добавив к любым двум уже изученным генам следующий Г., пока еще не локализованный на генетической карте, можно определить расстояние до него (в избранном масштабе), затем до следующего гена и т. д. В результате перебора новых комбинаций генов можно составить все более детальные генетические карты. Такие карты имеются уже для многих организмов. На основе изучения родословных в отдельных семьях (см. Генеалогия) удается создавать генетические карты и для многих генов, обусловливающих наследственные заболевания у человека. Эти сведения имеют большое теоретическое и практическое значение, так как позволяют с уверенностью судить о возможности и предполагаемой частоте возникновения у потомков родителей, несущих какиелибо гены, сразу двух или более заболеваний, обусловленных генетически. Благодаря открытию гигантских по размеру хромосом в слюнных железах ряда насекомых, включая наиболее Рис. 4. Зависимость частоты перекрестов на участках хромосом, заключенных между двумя генами, от линейного расстояния меж* ду ними. Две гомологичные хромосомы различаются по трем генам — В, D, Е (одни из них рецессивные — b, d, e, другие доминантные — В, D, Е). Расстояние между генами В и D вдвое больше, чем между генами D и Е . 1. На одной из стадий клеточного деления, предшествующей созреванию половых кле­ ток (мейозу), хромосомы сближаются; сблизившись, они могут переплестись. 2. П ри перекресте хромосомы образуют фигуру, называемую хиазмой; число хиазм зависит от расстояния между генами; поскольку в данном случае расстояние между генами В и D вдвое больше, чем между генами d и Е, то и число возможных хиазм на этом участке будет вдвое больше. 3. П ри разрыве хромосом в зоне хиазм может произойти обмен их участками, в результате которого возникает перерас-» пределение генов. изученный генетически организм — дрозофилу, удалось сопоставить генетические карты со строением хромосом и доказать, что эти карты не являются абстракцией, а на самом деле отражают порядок расположения генов в хромосоме и расстояние между ними (рис. 6). После доказательства того, что в основе каждой хромосомы лежит нить молекулы ДНК, соединяющейся специфическим образом с особыми ядерными белками, стало ясно, что молекулярная природа кроссинговера должна быть изучена прежде всего на базе изменений молекул ДНК. Было обнаружено, что начало кроссинговеру дают разрывы одиночных нитей ДНК, позволяющие освободиться участкам этих нитей в разных хромосомах, соединяющихся затем в новом порядке друг с другом. Молекулярный механизм кроссинговера активно исследуется, обнаружено несколько ферментов, участвующих в осуществлении этого процесса." Конъюгация. У бактерий обмен Г. осуществляется в результате процесса конъюгации, при к-ром две клетки бактерий (мужская и женская) соединяются друг с другом тонким — так наз. цитоплазматическим мости- ГЕН 119 1 рх ML \ \ \ 1 . 1 1 Рис. 6. Сопоставление генетической карты со структурой хромосом (на примере гигантской хромосомы слюнных желез дрозофилы). Благодаря открытию гигантских хромосом у насекомых, в которых под микроскопом отчетливо видны гены в виде дисков различной толщины, удалось доказать, что генетические карты, составленные на основе генетического анализа, правильно отражают порядок расположения генов в хромосомах и расстояние между ними. На рисунке показаны часть генетической карты второй хромосомы дрозофилы (ввер* ху) и участок второй хромосомы слюнных желез этого насекомого (внизу); буквами латинского алфавита на карте обозначены некоторые гены и указано относитель­ ное расстояние между ними; под изображением хромосомы указаны номера ее от­ дельных сегментов, буквами латинского алфавита обозначены их доли. Порядок расположения определенных генов и расстояние между ними на генетической карте и в хромосомах совпадают. . • .¦ /хромосома II хромосома X X 1 0,75 Рис. 5. Определение расстояния между генами в хромосомах (генетическое картирование). В двух гомологичных хромосомах (/) произвольно выбирают 3 какихлибо гена, например А, В и С (для наглядности в 1-й хромосоме показаны рецессивные гены — а, Ъ, с, во 2-й доминантные— Л, В, С) и определяют число перекрестов между ними, вначале на участке А—В , затем на участке В—С и далее на участке А—С . Промежуток между генами АиВв2 раза больше, чем между генами В и С, поэтому и частота перекрестов на участке ЬА—В, а следовательно, и расстояние между генами на этом участке будет в 2 раза больше, чем на участке В—С (на рисунке показан лишь один из возможных перекрестов). Далее определяют число перекрестов на участке А —С. Если ген С лежит между генами Л и В, то частота перекрестов на участке А—С будет составлять разницу перекрестов на участках А—В и В—С. Если же ген С расположен за генами Л и В, то расстояние А—С будет равно сумме перекрестов на участках А—В и В—С. Таким образом, определив число перекрестов между генами А, В и С, можно построить генетическую карту, размещая гены на расстоянии, пропорциональном частоте перекрестов между ними. На данном рисунке расстояние между генами Л и С принято за единицу. Получив эту информацию, можно продолжить работу, вовлекая в скрещивание другие гены. ком. По этому мостику из мужской клетки в женскую передается участок молекулы ДНК, к-рый затем внедряется (рекомбинирует) в молекулу ДНК женской клетки. Внедрившийся генетич. материал изменяет наследственные свойства бактерий, что играет важнейшую роль для их эволюции. Нужно отметить, что путем конъюгации могут быть переданы любые Г., вт. ч. и дефектные, что может повлечь зач собой их распространение в популяции микроорганизмов. Трансдукция. Другим способом обмена Г. у микроорганизмов служит трансдукция их с помощью вирусов {бактериофагов). В 1952 г. амер. ученые Д. Ледерберг и Н. Зиндер обнаружили, что некрые бактериофаги способны захватывать участки ДНК бактериальных клеток, в к-рых они размножились, а затем переносить в другие клетки. Захваченный вирусом и переданный фрагмент ДНК может нести несколько Г. Обнаружено несколько типов трансдукции. При неспецифической трансдукции в белковую оболочку вирусных частиц попадает в основном ДНК бактерий, и такие частицы почти не несут собственной ДНК. Однако в силу того, что способность присоединяться к клеткам бактерий определяется белками оболочки вируса, они сохраняют свойство адсорбции на клетках бактерий и после прикрепления к ним вводят внутрь бактерий захваченные ранее отрезки молекул ДНК. Т. к. собственной ДНК этих вирусов недостаточно для того, чтобы обеспечить размножение новых вирусных частиц, дальнейшего развития вирусной инфекции не происходит, а в бактериальных клетках оказываются участки ДНК, привнесенные от других бактериальных клеток. Они могут внедриться внутрь ДНК, обеспечивая этим обмен Г. между различными бактериями. При неспецифической трансдукции вирусы могут захватывать участки из практически любого отрезка ДНК бактерий и тем самым обеспечить обмен любыми Г. бактерий. Отличным от описанного вида трансдукции является специфическая или» ограниченная трансдукция. В этом случае ДНК вируса присоединяется к строго ограниченным участкам ДНК бактерий. При выходе вирусной ДНК из состава бактериальной первая захватывает с собой соседствующие с ней Г. бактерий и переносит их в другие бактериальные клетки. Например, бактериофаги ~k и ф 80 присоединяются вблизи Г., определяющих усвоение клетками молочного сахара (лактозы), и могут захватывать эти Г. при своем размножении. Амер. ученым С. Мер- 700 hy \ Масштаб С \ D E 57 58 Юмкм рилу, М. Гейеру и Дж. Петриччиани в 1961 г. удалось с помощью бактериофагов захватить эти Г. и перенести их не в бактериальные клетки, а в клетки, взятые от больного, страдающего одной из наследственных болезней углеводного обмена, к-рая проявлялась нарушением усвоения лактозы. После добавления к культуре клеток человека бактериофагов, несущих недостающие гены, у части клеток восстановился нормальный синтез ферментов, управляющих усвоением лактозы. Аналогичные опыты были проведены австрал. учеными С. Доем и П. Грессгофом в 1973 г. с клетками растений, не способными расти на среде с лактозой, но приобретшими эту возможность после контакта с бактериофагами, принесшими с собой нужные гены от бактериальных клеток. Эксперименты обеих групп исследователей интересны не только тем, что они продемонстрировали принципиальную возможность осуществления трансдукции в клетках высших организмов —г-человека и растений, но и тем, что указали на биохимия, общность реакций в клетках бактерий, животных и растений и возможность лечения наследственных недугов с помощью чужеродной генетич. информации, выделенной из клеток различного происхождения. Трансформация. Обмен Г. удается осуществить и более простым способом: выделив ДНК из одних клеток бактерий и добавив ее^ к другим клеткам, отличающимся по своим генетич. признакам. Этот процесс был назван трансформацией. Первоначально процесс трансформации был обнаружен у пневмококков, сенной палочки и бактерий рода гемофилис, затем этот список был расширен. Трансформация была описана и на модели клеток высших организмов. Первые опыты подобного рода были выполнены в 1962 г. с клетками человека, а в начале 70-х гг. с клетками растений (эксперименты белы., нем. и сов. ученых). Изучение процессов обмена генетич. информацией находится в центре внимания генетиков и биохимиков. Их исследования стали частью нового направления экспериментальной генетики, ставящего своей задачей найти пути направленного изменения наследственности гл. обр. с целью устранения различных наследственных недугов (см. Инженерия генетическая). Выделение индивидуальных генов и искусственный синтез гена. В 1969 г. группа ученых выделила из ДНК кишечной палочки в чистом виде структурную часть одного из Г., определила его размеры и сфотографировала в электронном микроскопе. Подобные исследования, проведенные еще на нескольких объектах, показали, что в принципе возможно развить методы выделения индивидуальных Г., к-рые можно будет в будущем использовать для устранения наследственных недугов. Не менее важной для этих целей может стать разработка способов искусственного синтеза Г. Проводятся также исследования по искусственному размножению отдельных молекул ДНК, несущих сразу много Г. Первый успех в этом направлении был достигнут группой биохимиков, сумевших в отсутствие клеток размножить выделенную в чистом виде молекулу ДНК одного из бактериофагов, а затем доказать жизнеспособность этих искусственных копий молекул ДНК. С помощью таких молекул ДНК, введенных в клетки бактерий, удалось вызвать образование инфекционных вирусных частиц. Позднее был обнаружен фермент, способный вести синтез ДНК на молекулах РНК. Сама идея, что РНК может послужить шаблоном для синтеза ДНК, была высказана в 1961 г. сов. генетиком С. М. Гершензоном. После выделения этого фермента сразу в трех лабораториях в 1972 г. удалось с его помощью синтезировать в бесклеточной системе структурные части Г., кодирующих белки гемоглобина животных и человека. Искусственно синтезированные Г. также могут в дальнейшем быть использованы в экспериментах по генетич. инженерии. Взаимодействие генов и влияние окружающей среды на их активность. Согласно первоначальным взглядам генетиков каждый отдельный Г. управляет определенным индивидуальным признаком, проявление Г. не зависит ни от внешних воздействий, ни от того, в каком месте хромосомы он находится. Для И. Г. Менделя вопрос о «соседях» того или иного Г. в хромосоме вообще был лишен смысла, т. к. ему не было ничего известно о расположении и свойствах Г. Однако уже в 1913 г. было развито представление о множественном (плейотропном) действии Г., о том, что один Г. может оказывать влияние в ряде случаев сразу на несколько признаков. Это представление было доказано в последующих исследованиях, а природа эффекта плейотропии выяснена методами биохимической генетики. Было установлено, что изменение активности или отсутствие какоголибо фермента может приводить к нарушению синтеза химич. соединений, участ- вующих в нескольких последующих реакциях. Именно свойство плейотропии лежит в основе множественности нарушений при наследственных болезнях человека, вызываемых дефектом какоголибо одного Г. Одновременно было показано, что многие признаки формируются при участии продуктов нескольких Г., совместное и строго координированное действие к-рых обусловливает их развитие (так наз. полимерные Г.; признаки, формируемые под их контролем, называют количественными признаками). Была обнаружена зависимость проявления отдельного Г. от того, в соседство с каким из Г. он попадает в результате обмена Г. Впервые положение о зависимости проявления Г. от их перестановки в хромосомах и связанной с этим переменой в их фенотипич. проявлении было высказано сов. генетиком С. С. Четвериковым в 1926 г., определившим его как «генотипическую среду», оказывающую влияние на активность Г. Это положение также получило полное подтверждение в современной генетике. Т. о., современная генетика доказала наличие Г. у всех живых организмов и установила, что все без исключения морфологические признаки организмов, физиологические и биохимические реакции в них развиваются и протекают под контролем Г. Молекулярные механизмы работы Г. были детально изучены, и во многих случаях прослежено развитие определенных признаков в зависимости от работы конкретных генов. После раскрытия принципов зашифровки наследственной информации (см. Генетический код) и полной его расшифровки стало возможным начать исследования по выделению индивидуальных Г. и по их искусственному синтезу. Удалось также изучить различные механизмы обмена Г. между клетками одного и того же организма и между разными организмами, что важно для эволюции (см. Эволюционное учение); был детально исследован механизм реализации генетической программы при развитии организмов. Была доказана сложная природа этого процесса и установлено, что на него влияют различные факторы, в т. ч. факторы окружающей среды и среди них многие лекарственные препараты (антибиотики, гормоны, сульфаниламиды и т. д.), искажающие Г. или мешающие их работе. Т. о., выяснение молекулярных механизмов действия Г., с одной стороны, и влияния на эти процессы различных лекарственных препаратов — с другой, дает единственно правильный путь для разработки эффективных методов лечения многих болезней и является важнейшим фактором, обусловливающим недопустимость самолечения.

Генеалогия

Родословные составлялись еще в древности для доказательства знатного происхождения фараонов, королей, царских и дворянских фамилий. В конце 19 в. англ. антрополог Ф. Гальтон предложил составлять и анализировать родословные для установления закономерностей наследственной передачи различных признаков (в т. ч. болезней)у человека. Этот метод был назван генеалогическим и стал одним из основных в изучении генетики человека. В частности, генеалогич. метод широко используют при мед.-генетич. консультировании (см. Медикогенетическая консультация) для диагностики и определения величины риска появления заболевания в потомстве- Установление особенностей наследования позволяет правильно подойти к анализу ранних клинич. проявлений наследственных болезней и т. о. поставить правильный диагноз до развития выраженных стадий заболевания. Кроме того, с помощью генеалогич. метода можно определить влияние на наследственность человека внешних факторов, близкородственных браков и др. Сущность генеалогич. метода состоит в выяснении родственных связей и прослеживании проявления определенного признака (напр., болезни) в различных поколениях родственников. Условно генеалогич. метод можно разделить на два этапа: составление родословной и ее генетич. анализ. Источниками сведений для составления родословной являются непосредственное обследование, истории болезни, результаты опроса членов семьи, архивные и другие материалы. При этом достоверность исходных данных определяет точность результатов исследования. Поэтому попытки скрыть наличие заболеваний у родственников, истинного отца ребенка и т. п. мешают своевременному выявлению наследственного недуга и принятию необходимых мер по его предотвращению или коррекции (исправлению).

Для удобства анализа родословной и ее наглядности полученные сведения представляют в виде графической схемы. Составление родословной начинают с пробанда, т. е. лица, заинтересовавшего исследователя. Слева и справа от пробанда по одной горизонтальной линии располагают символы, изображающие его братьев и сестер (сибсов). Каждое предшествующее поколение располагается выше, а последующее — ниже линии пробанда. Для удобства графич. изображения сначала вычерчивают родословную линию одного родителя, затем второго. Каждый член родословной имеет свой шифр. Так, поколения обозначают римскими цифрами сверху вниз. Арабскими цифрами последовательно слева направо нумеруют потомство одного поколения.

Первым этапом анализа родословной является установление наследственной природы исследуемого признака. Если один и тот же признак встречается в родословной многократно, то можно предположить его наследственную природу. Однако внешняя тождественность признаков еще не означает их генетич. тождественности. Одни и те же проявления признака могут быть совершенно различного происхождения. Напр., причиной рахита может быть, с одной стороны, недостаточность витамина D в пище, а с другой — наследственно обусловленный низкий уровень фосфата в крови. Для точности диагностики генеалогич. исследование дополняют другими современными методами обследования.

После установления наследственной природы изучаемого признака приступают к генетич. и статистич. анализу родословной. Такой анализ позволяет установить, к какому из трех известных типов наследования — аутосомнодо-минантному, аутосомнорецессивному или сцепленному с полом — подчиняется передача исследуемого признака.

Для аутосомнодоминантного типа наследования (рис. 1) характерна прямая передача признака от одного родителя ребенку (так наз. вертикальная передача), причем оба пола наследуют этот признак с равной вероятностью. Так наследуется св. 900 болезней и пороков развития, включая различные формы глухоты, короткопалость, шестипалость, врожденные пороки сердца и др. Вероятность наследования дефектного гена составляет 50% .

При аутосомнорецессивном типе наследования исследуемый признак может проявляться не в каждом поколении. Напр., у здоровых родителей могут родиться дети, больные наследственным заболеванием, или здоровые члены родословной могут иметь больных дядю, тетку и др. Т. е. часть членов родословной может быть носителем «больного» гена, не имея признаков заболевания, и передать его своим потомкам, у к-рых это заболевание может проявиться. При этом, если оба родителя являются носителями дефектного гена, в среднем один ребенок из четырех может унаследовать два дефектных гена и, следовательно, болезнь, а двое из четырех — могут быть носителями дефектного гена без проявлений болезни. Аутосомнорецессивно наследуется ок. 800 заболеваний,в т. ч. альбинизм, различные анемии, многие нарушения обмена веществ и др. Наследование признаков, сцепленных с полом, полностью подчиняется закономерностям распределения у потомков половых хромосом (см. Пол). Наиболее часто патологич. признаки бывают сцеплены с Х-хромосомой. В этих случаях наследственное заболевание проявляется почти исключительно у мужчин, лица же женского пола могут быть носителями дефектного гена. Мать—носительница дефектного гена передает его половине сыновей, у к-рых проявится наследственное заболевание. Больной наследственным заболеванием отец может передать дефектный ген половине дочерей, к-рые будут его носителями, а все его сыновья будут здоровы. Так наследуется, напр., гемофилия, некрые формы диабета несахарного, цветовая слепота, некрые формы задержки психич. развития и др. Дефектный ген, сцепленный с Y-xpo-мосомой, наследуется только по мужской линии; он передается от отца всем сыновьям, но ни одна из дочерей его не наследует.

Правильность опытного определения типа наследования любого признака проверяется статистич. обработкой. Составление и анализ родословной является единственным методом определения риска наследственного заболевания.

Генотип

Генотип — наследственная конституция дан­ной особи (в целом или в отношении данного наследственного признака); набор имеющихся у нее генов.

Генетика

Генетика — наука о наследственности и изменчивости организмов. Первые попытки исследования наследственности относятся к 17 в. В 1694 г. нем. ботаник Р. Камерариус доказал существование половых различий у растений. В начале 18 в. были получены искусственные гибриды растений. В 1760 г. член Петербургской академии наук И. Кельрейтер установил наследование гибридами признаков родителей и доказал «равноправие» мужских и женских клеток в формировании завязи, а также предложил методы искусственного скрещивания, к-рые используются до настоящего времени. С начала 19 в. предпринимались многочисленные попытки выяснить законы наследования потомками признаков родителей. Сделать это удалось только во второй половине 19 в. чеш. натуралисту И. Г. Менделю. В 1865 г. он доложил результаты своих многолетних наблюдений. Впервые применив статистические методы обработки результатов биологич. экспериментов, И. Г. Мендель сформулировал основные законы передачи наследственных признаков от родителей к потомкам (правила или законы Менделя — см. Наследственность). Более того, И. Г. Мендель высказал предположение о существовании в клетках отдельных (дискретных) частиц, являющихся задатками наследственных признаков. Каждая соматическая клетка (клетка тела) несет пару наследственных задатков, в половых клетках (гаметах) содержится по одному задатку из пары. При оплодотворении, когда происходит слияние половых клеток, эти задатки объединяются в различных комбинациях. Их проявление в процессе формирования нового организма лежит в основе воспроизведения наследственных признаков родителей. В условиях, когда науке еще не были известны многие существенные детали строения клетки, клеточное деление, сущность полового процесса, когда представления о наследственности носили умозрительный характер, гениальная догадка И. Г. Менделя, основанная лишь на безупречно точных опытах, их математической обработке и глубоком логическом анализе причин наблюдаемых явлений, настолько опережала свою эпоху, что не могла быть понята и оценена современниками. Только спустя 35 лет одновременно и независимо друг от друга голл. ученый Г. де Фриз, нем. ученый К. Корренс и чеш. ученый Э. Чермак вторично «открыли» законы наследования признаков и, случайно обнаружив забытую работу И. Г. Менделя, познакомили с ней научную общественность. С этого времени учение о наследственности начало развиваться как самостоятельная наука, к-рая с 1906 г. по предложению англ. биолога У. Бэтсона стала именоваться генетикой. Наследственные задатки дат. ученый У. Иоганнсен в 1909 г. предложил называть генами. 

Начало 20 в. ознаменовалось бурным развитием генетических исследований. К этому времени благодаря успехам микроскопич. техники стали известны детали строения клетки, были открыты закономерности образования половых клеток, обнаружены хромосомы — особые структуры в ядре клетки, число и набор к-рых оказались весьма стабильны в клетках организмов одного вида и различны в клетках организмов разных видов; было открыто деление клеток — митоз, во время к-рого происходит точное распределение удвоившихся хромосом родительских клеток по дочерним клеткам. Поэтому именно хромосомы стали считать носителями наследственных задатков — генов. Выяснение закономерностей созревания половых клеток и сущности полового процесса в целом полностью подтвердили предположение И. Г. Менделя о дискретности и парности наследственных задатков. С этих пор явление наследственности стали прочно связывать с материальными структурами клетки, каковыми являются хромосомы.

В 1899—1901 гг. голл. ученый Г. де Фриз и рус. ученый С. И. Коржинский обнаружили организмы, резко отличающиеся от своих сородичей по какомулибо признаку, и сформулировали теорию, согласно к-рой наследственные свойства и признаки организма могут внезапно и резко изменяться. Эта теория получила название «теории мутаций» (см. Изменчивость, Мутагенез), а особи, резко отличающиеся по какомулибо признаку от своих сородичей, были названы мутантами.

В 1910—1913 гг. амер. биолог Т. Морган и его ученики в опытах на плодовой мушке дрозофиле доказали, что гены действительно сосредоточены в хромосомах в линейном порядке; был экспериментально установлен процесс обмена участками хромосом во время сближения парных хромосом и перекреста между ними (кроссинговера). Вслед за этим были построены первые карты хромосом сначала для широко используемого в генетических экспериментах насекомого дрозофилы, а затем и для ряда других организмов (прежде всего полезных растений). На картах указывалось взаимное расположение генов и относительное расстояние между ними. Эта работа стала возможной, в частности, потому, что Т. Моргану и его ученикам удалось обнаружить в естественных условиях мутантных дрозофил по нескольким сотням генов. Учение Т. Моргана, получившее название хромосомной теории наследственности, стало одним из наиболее крупных материалистич. обобщений молодой Г. в начале 20 в.

В то же время в методологич. плане изучение расположения генов в хромосомах, проводившееся школой Т. Моргана, и анализ комбинирования генов при скрещивании различных организмов велись раздельно. Ученые не видели на первых порах четких связей между обоими направлениями генетических исследований. Не способствовало их объединению и изучение мутаций и частоты встречаемости их в естественных условиях. Более того, оба основателя мутационной теории (и Г. де Фриз и С.И. Коржинский) противопоставляли процесс возникновения мутаций учению Ч. Дарвина (см. Эволюционное учение). Несколько различно в генетическом смысле, но в методологич. плане фактически одинаково С. И. Коржинекий и Г. де Фриз даже пытались заменить дарвинизм мутационной теорией, считая, что основным фактором эволюции живой природы является не процесс естественного отбора, т. е. выживания наиболее приспособленных к условиям существования форм, а процесс самопроизвольного возникновения мутантных форм организмов. Их взгляды были подхвачены рядом апологетов их теории, и пропасть, разверзшаяся между учением И. Г. Менделя (позднее и Т. Моргана) и дарвинизмом, углублялась все больше. Тем более значительным вкладом в развитие генетики и эволюционного учения стала теоретическая работа сов. ученого С. С. Четверикова, доказавшего в 1926 г., что именно мутации, возникающие в естественных условиях и подчиняющиеся наследованию по закономерностям И. Г. Менделя, служат основным материалом для естественного отбора. С. С. Четвериков математически рассчитал скорость отбора и распределения мутантных генов в ряду поколений организмов в популяциях и тем самым заложил основы важнейшей отрасли Г.— популяционной генетики. Большую роль для понимания возможностей мутационного процесса и типов возникающих мутаций сыграл сформулированный сов. ученым Н. И. Вавиловым закон гомологических рядов в наследственной изменчивости. Сущность этого закона заключается в том, что возникающие новые наследственные признаки (мутации) у родственных организмов (видов, родов и семейств) однотипны (параллельны) и эти признаки повторяют друг друга тем полнее, чем ближе сопоставляемые формы по своему происхождению. Н. И. Вавилов провел огромную работу по обследованию центров происхождения культурных растений, поиску по всему миру древних предков современных культурных растений, различных измененных форм этих растений (мутантов), созданию всеобъемлющей коллекции мировых растительных ресурсов и, наконец, созданию учения о теоретических основах селекции растений.

В генетических исследованиях, проводимых до 1925 г., ученые использовали мутанты, встречающиеся в естественных условиях. Хотя ряд ученых (Т. Морган, Н. К. Кольцов и др.) понимали, что можно вызвать мутации искусственно, многочисленные попытки осуществить это экспериментально долгое время оказывались безуспешными. Лишь в конце 20-х — начале 30-х гг. была экспериментально доказана возможность изменчивости генов (мутации) под влиянием факторов окружающей среды. В 1925 г. сов. ученые Г. А. Надсон и его ученик Г. С. Филиппов на низших дрожжах, а в 1927 г. амер. ученый Г. Мёллер на дрозофиле получили наследственные изменения (мутации) под действием рентгеновских лучей; в 1928 г. другой ученик Г. А. Надсона — М. Н. Мейсель показал способность химич. агентов вызывать мутации у дрожжей. В 1932 г. явление химич. мутагенеза у дрозофилы наблюдал сов. ученый В. В. Сахаров, а начиная с 1939 г. сов. генетик И. А. Рапопорт начал широкое изучение мутагенной (вызывающей мутации) активности Многих химических соединений. Большой вклад в изучение этой проблемы внесли англ. ученые III. Ауэрбах, Т. Лавли и др.

В результате всех этих исследований уже в конце 20-х гг. перед генетиками особенно остро встал вопрос, что же представляет собой ген как структур­ ная единица наследственности и какова его химич, природа».

Попытки найти ответ на первый вопрос были предприняты еще Т. Морганом, а также рядом других исследователей (в т. ч. сов. учеными А. С. Серебровским, Н. В. Тимофеевым-Ресовским, А. А. Прокофьевой-Бельговской в соавторстве с Г. Мёллером, приехавшим на несколько лет работать в СССР , и др.). Было установлено, что каждый ген определяет развитие определенного признака и является минимальной частью хромосомы, к-рая может быть передана в другую хромосому в процессе их перекреста (кроссинговера). Считалось также установленным, что в результате ген изменяется целиком, не дробясь. Однако в 1928—1929 гг. в лаборатории А. С. Серебровского было доказано, что в определенных условиях удается разделить ген на различные участки (центры), мутирующие раздельно, и в дальнейшем им и его учениками, прежде всего Н. П. Дубининым, была сформулирована так наз. центровая теория гена. Сущность этой теории заключалась в том, что ген состоит из отдельных расположенных в линейном порядке частей, что отдельные части гена могут независимо друг от друга изменяться (мутировать), обмениваться при перекресте хромосом (кроссинговере) и что действие гена в целом обусловлено объединением и согласованием функций его частей. Позднее, в 1957—1961 гг., амер. ученый С. Бензер экспериментально доказал, что по длине гена может возникать множество мутаций и что при кроссинговере в обмене участвуют не целые гены, а их отдельные участки.

Сложнее обстояло дело с изучением хим. природы генов. Еще во второй половине 19 в. было выяснено, что в хромосомах содержатся белки и нуклеиновые кислоты и что одна из нуклеиновых к-т — дезоксирибонуклеиновая к-та (ДНК) содержится гл. обр. в хромосомах. Однако биологи вплоть до 50-х гг. 20 в. полагали, что гены должны содержаться в молекулах белков. Лишь после зарождения нового направления в Г.— молекулярной генетики удалось доказать, что именно ДНК несет генетическую функцию. Первые эксперименты, прямо показавшие это, были сделаны на микроорганизмах. В 1944 г. было установлено, что введение ДНК, взятой от одних бактерий, в клетки других вызывает у последних изменения наследственных свойств. В 1953 г. амер. ученый Дж. Уотсон и англ. ученый Ф. Крик предложили гипотезу о строении ДНК, согласно к-рой молекула ДНК имеет форму двойной спирали. Гипотеза Дж. Уотсона и Ф. Крика, быстро получившая подтверждение, признание и развитие, лежит в основе современных представлений о строений и свойствах нуклеиновых к-т. Относительная хим. стабильность и присутствие ДНК и РНК в составе всех без исключения живых организмов позволили предположить, что именно ДНК и РНК, а не белки являются теми молекулярными структурами, к-рые обеспечивают хранение и передачу генетической информации — наследование признаков от клетки к клетке и через половые клетки от организма родителей к потомкам. Иными словами, именно ДНК и РНК содержат в своей структуре «запись» наследственной информации, тот генетический код, ту наследственную программу, согласно к-рой при развитии нового организма будут формироваться его признаки и свойства. Гипотеза Уотсона — Крика давала возможность понять, как происходит постоянное и точное воспроизведение молекул ДНК (репликация), т. е. как обеспечивается сохранение и поддержание генетической программы. Сама идея о возможности воспроизведения наследственного материала была высказана сов. ученым Н. К. Кольцовым еще в 1927 г. Однако Н. К. Кольцов связывал эту способность с функцией белковых молекул хромосом, В дальнейшем было установлено, что воспроизведение (репликация) молекул ДНК происходит путем удвоения ее цепей предварительным разъединением двойной спирали на две одиночные и путем достройки на каждой из них ее копии согласно правилу соответственности, комплементарности (см. Генетический код). Дальнейшие исследования раскрыли сложный механизм воспроизведения ДНК, выявили роль ферментов в этом процессе, показали, что принципиальная схема репликации сходна как у низших, так и у высших органмзмов (см. Молекулярная генетика, Нуклеиновые кислоты).

Параллельно с этим начала вырисовываться картина функционирования наследственной записи, т.е. осуществления генетического контроля синтеза белков. Выяснилась роль в этом процессе молекул двух видов РНК — так наз. информационной РНК и транспортной РНК. Возможности молекулярного анализа структур ядра клетки вооружили Г. новыми точными, экспериментально доказанными данными о структуре и свойствах генов. Было развито представление о гене как отрезке молекулы ДНК (у некрых вирусов РНК), к-рый определяет строение первичной структуры молекулы белка, является основой современной Г. (см., Ген, Генетический код).

Дальнейшим шагом в познании функции генов было установление механизмов регуляций их работы. В 1961 г. франц. ученые Ф. Жакоб и Ж. Моно выявили, что у микроорганизмов наряду с генами, определяющими синтез ферментов (так наз. структурными генами), существуют участки ДНК, управляющие активностью этих структурных генов,— так наз. регуляторные участки. Было выяснено, что имеются генырегуляторы, кодирующие белкирепрессоры, последние «закрывают» или, напротив, «открывают» операторные участки, после чего становится возможным соединение ферментов, ведущих синтез копий генов в виде информационных РНК (РНК-полимераз) с молекулами ДНК. Продвигаясь по гену, РНК-полимераза ведет копирование (считывание, или транскрипцию) гене-, тической информации.

Начиная с I960 г. стали проводиться исследования молекулярных основ возникновения мутаций, в результате к-рых была выявлена общая схема изменений генетического кода, приводящих к мутациям. После открытия у микроорганизмов животных и растений свойства восстановления (репарации) генетических повреждений в результате работы специальных ферментов (см. Репарация генетическая) стали накапливаться данные о связи мута- генеза и репарации. В ходе этих исследований было выяснено, что повреждение генов системы репарации приводит к ряду серьезных заболеваний. Было установлено, что Частота хромосомных нарушений прямо зависит от уровня активности репарирующих систем. Т. о., эти открытия, сделанные в кратчайшие сроки, позволили создать стройную материалистическую концепцию устройства и функционирования генетического аппарата живых клеток.

Однако следует подчеркнуть, что подавляющее большинство исследований, посвященных изучению генетического кода, было проведено на микроорганизмах и еще предстоит выяснить, насколько справедлива концепция регуляции действия генов, принятая для бактерий и вирусов, в отношении более высокоорганизованных организмов. Сов. ученые А. С. Спирин и Г. П. Георгиев (1964—1965) экспериментально доказали, что в клетках животных существуют особые формы сохранения генетической информации в виде сформировавшихся ранее на молекулах ДНК комплексов РНК и белка (так наз. информосомы). В лаборатории Г. П. Георгиева были проведены широкие исследования структуры ДНК и характера считывания (транскрипции) генетической информации в хромосомах * высших организмов. В 1959 г. амер. ученые Бриттен и Кон обнаружили, что у высших организмов, в отличие от микробов, в ДНК хромосом имеются области, в к-рых последовательность расположения нуклеотидов (основных структурных единиц нуклеиновых к-т, и в частности ДНК) многократно повторена. Роль этих повторов пока еще не ясна, но установлено, что эти зоны отграничивают области так наз. уникальных последовательностей, в к-рых, видимо, и сосредоточены структурные гены. В 1974—1976 гг. стал проясняться характер взаимодействия ДНК и особых белковых молекул (гистонов) и сложилось представление об организации хромосом на молекулярном уровне (см. Хромосомы).

Большие успехи достигнуты в изучении Г. соматических клеток (клеток тела) человека, животных и растений.

Одним из наиболее увлекательных и наименее выясненных вопросов Г. является вопрос о генетическом контроле развития, о реализации программы развития, закодированной в генах, в совокупность признаков и свойств организма (так наз. биология развития). Вопрос этот, естественно, включает в себя и проблему соотношения наследственного и средового факторов в формировании организма.

Выяснение молекулярных механизмов реализации генетической программы, т. е. данные молекулярной Г., способствовали переходу на новый уровень исследований в области изучения индивидуального развития — эмбриологии, возрастной морфологии и физиологии, геронтологии (наука о старении организма), а в медицине — в области акушерства, педиатрии и других разделов клинич. медицины. Центральным стал вопрос об интимных механизмах дифференцировки клеток, зародыша, в результате к-рых, напр., за не-' сколько месяцев из оплодотворенной женской половой клетки (зиготы) раз-' вивается сложный многоклеточный орга- низм человека с многообразными и высокоразвитыми функциональными возможностями.

Старый вопрос о роли наследствен ности и факторов окружающей среды в формировании и развитии организма после многих лет значительных противоречий, дискуссий и заблуждений разрешается на базе признания единства генетического и средового факторов. В процессе развития каждого организма реализация генетической программы в свойства и признаки нового организма идет под влиянием окружающих организм условий существования. Наличие генетической программы обеспечивает наследование организмом признаков предков, его видовых особенностей, а влияние условий существования в период развития организма определяет отклонения, индивидуальные отличия, к-рые, как правило, не затрагивают генетического аппарата половых клеток и не наследуются. Если же под влиянием сильнодействующих факторов среды возникла мутация, то такое изменение наследуется и может сохраниться в поколениях. Современная Г. в зависимости от конкретных объектов, задач и методов исследования имеет ряд разделов и направлений. В рамках Г. сформировались как самостоятельные научные дисциплины молекулярная генетика, биохимич. генетика, генетика развития, цитогенетика, радиационная генетика, популяционная генетика, генетика микроорганизмов (см. Бактерии, Вирусы) и др. Специализация внутри каждой из этих дисциплин достигла настолько большой степени, что многие из них воспринимаются на первый взгляд как самостоятельные, не связанные друг с другом: отрасли науки. Вместе с тем, несмотря на кажущуюся изолированность, каждая из этих дисциплин служит цели познания различных сторон таких фундаментальных свойств живого, как наследственность и изменчивость.

Такая общая методологич. направленность исследований разных сторон про- . явления общебиологич. свойств наследственности и изменчивости, несомненно, приведет в будущем к объединению всех пока разнородных и порой даже внешне не связанных генетических дисциплин в единую науку. Этот процесс проявляется, конечно, и сейчас, но он еще далек от завершения.

Все большее развитие получают генетические исследования, направленные на познание наследственности человека. Большое внимание уделяется изучению генетических основ наследственных болезней, выяснению роли факторов окружающей среды в развитии болезней и значения охраны среды как мощного фактора, влияющего на наследственность человека. Эти вопросы разрешает специальный раздел Г.— медицинская генетика.

В эпоху научнотехнической революции Г. является одним из наиболее актуальных бурно развивающихся разделов биологии, всегда тесно связанным с практикой. Именно успехи современной Г. способствуют увеличению продуктивности с.-х. культур (пшеницы, сахарной свеклы, кукурузы, гречихи и др.), получению лучших порбД скота, пушных зверей. Достижения Г, Способствуют развитию микробиологической промышленности (производство антибиотиков и др.)- Успехи современной Г. позволяют подойти к грандиозной задаче будущего — разработке мер защиты наследственного аппарата человека от вредных влияний факторов окружающей среды, а также способов лекарственной коррекции (исправления) наследственных недугов и возможного в будущем прямого вмешательства в наследственный аппарат человека с целью устранения или замены «больных» генов, от к-рых зависит то или иное заболевание. В этом плане высказываются надежды, что использование специальных методов биохимич. манипулирования с генами (см. Инженерия генетическая) позволит в будущем освободить человека от груза многих болезней. Однако очевидно, что до этого времени предстоит разрешить огромное число как чисто научных, так и не менее важных моральноэтических проблем., Об основных понятиях и законах учения о наследственности и изменчивости в современном их понимании.

Геотропизм

Геотропизм (гр. геа — земля, тропос — пово­рот) — тенденция к росту вниз или вверх (обычно у той или иной части растения); влия­ние направления силы тяжести на рост.

Генетический код

Генетический код — система зашифровки наследственной информации в молекулах нуклеиновых кислот. На основе закодированной информации гены управляют синтезом белков, и в первую очередь ферментов, поскольку последние контролируют все процессы обмена веществ и энергии. Специфичность строения и функции отдельных белков в свою очередь определяются тем, из каких структурных единиц (аминокислот) они состоят и в какой последовательности эти аминокислоты расположены в молекуле белка.

После того как в 50-е гг. 20 в. было установлено, что гены — это участки молекулы дезоксирибонуклеиновой к-ты (ДНК — см. Нуклеиновые кислоты) и что они определяют структуру определенных белков, стало очевидным, что между химии, структурой определенных участков молекулы ДНК и конкретными белковыми молекулами существует определенная зависимость, сущность к-рой (как выяснилось в дальнейшем) состоит в том, что определенный порядок расположения аминокислот в белках соответствует определенному порядку расположения нуклеотидов (структурных единиц ДНК) в гене. Установление этой зависимости позволило приступить к расшифровке Г. к., т. е. к установлению законов соответствия между последовательностью нуклеотидов ДНК и последовательностью аминокислот в молекулах белков. Расшифровка Г. к. усложнялась тем, что в составе ДНК, как было известно, имеется только 4 типа нуклеотидов: адениловые (А), гуаниловые (Г), тимидиловые (Т) и цитидиловые (Ц) (см. Нуклеиновые кислоты), а в составе белков — 20 основных аминокислот. Теоретич. анализ решения этой задачи был предпринят в 1954 г. амер. физиком Г. Гамовым, к-рый предположил, что каждую аминокислоту кодирует тройка нуклеотидов — так наз. триплет, или кодон. Таких кодо- нов должно было быть 64 (число сочетаний четырех элементов в группах по три равно 43, или 64), а это более чем в три раза превышает число основных аминокислот в белке. В связи с этим было высказано предположение, что одной аминокислоте может соответствовать не один, а несколько кодонов. Первое время казалось, что в природе существует какоето правило отбора нужных 20 кодонов и «устранения» остальных 44 кодонов, оказывающихся ненужными для кодирования. Не было также ясно, как располагаются кодоны вдоль гена. Для объяснения этого было предложено много гипотез о различных моделях Г. к., к-рые можно разделить в основном на три группы: 1) гипотезы, согласно к-рым тройки нуклеотидов (триплеты) следовали в пределах гена непрерывно друг за другом без какихлибо «бессмысленных», то есть не кодирующих аминокислоты, нуклеотидов (так наз. сплошной код, или непрерывный код без запятых); 2) гипотезы, согласно к-рым триплеты, кодирующие аминокислоты, могли располагаться в гене последовательно один за другим, однако между ними могли лежать и «бессмысленные» отрезки нуклеотидов, представляющие собой «знаки препинания» (так наз. код с запятыми), и, наконец, 3) гипотезы, согласно к-рым триплеты могли перекрываться и, скажем, первый, второй и третий нуклеотиды от начала гена кодировали бы первую аминокислоту; второй, третий и четвертый нуклеотиды кодировали бы вторую аминокислоту и т. д. (сплошной перекрывающийся код).

В 1961 г. было экспериментально доказано, что справедлива первая модель сплошного (неперекрывающегося) кода без «запятых». Далее было установлено, что генетич. запись в нуклеиновых к-тах осуществляется в соответствии со следующими правилами: 1) между последовательностью нуклеотидов и кодируемой последовательностью аминокислот существует линейное (прямое) соответствие; 2) считывание Г. к. начинается с определенной точки; 3) считывание идет в одном направлении в пределах одного гена; 4) код является неперекрывающимся; 5) при считывании не бывает промежутков (код без «запятых»); 6) одну аминокислоту могут кодировать два и более однозначных триплета (синонимов); 7) код в живой природе универсален (за некрыми исключениями), т. е. свойствен всем живым организмам на Земле. Универсальность Г. к. подтверждается экспериментами по синтезу белка в условиях культивирования вне организма. Если в бесклеточную систему, полученную из одного организма (напр., из кишечной палочки), добавить нуклеиновую к-ту, полученную из другого организма, далеко отстоящего от первого в эволюционном отношении (напр., проростков гороха), то в такой системе будет идти белковый синтез.

Выяснение общей природы Г. к., доказательство его триплетности и непрерывности считывания было огромным шагом вперед в понимании законов наследственной записи, однако эти работы не давали информации о том, какие конкретно триплеты соответствуют каким аминокислотам. Эта задача была во многом разрешена в 1961— 1964 гг. благодаря работам амер.био- химиков М. Ниренберга, Ф. Ледера и нем. ученого Г. Маттеи. На основании полученных ими данных, подкреплен­ ных затем исследованиями других уче­ ных, стал известен не только нуклео- тидный состав всех кодонов, но и был выяснен полный «генетический сло­ варь» живой природы (было дано точ­ ное соответствие всех 64 триплетов двадцати аминокислотам). Перевод ге­ нетич. записи в структуру белка заклю­ чается в том, что на молекуле ДНК син­ тезируются с помощью спец. ферментов копии генов в виде молекул так наз. информационной рибонуклеиновой к-ты (иРНК; процесс транскрипции Г. к.). Эти молекулы затем соединяются с рибосомами в цитоплазме клеток и там напротив каждого из триплетов иРНК молекулы транспортных РНК подставляют нужные аминокислоты в соответствии с кодом (процесс трансляции Г. к.). При этом часть аминокислот кодируется двумя и более триплетами и лишь две аминокислоты (метионин и триптофан) одним триплетом.

Три триплета из 64 УАА, УАГ и УГА не кодируют никаких аминокислот, и поэтому как только при «чтении записи» в информационной РНК рибосома доходит до любого из этих «бессмысленных» кодонов, она не может подставить напротив них ни одну из аминокислот, и на этой точке чтение, т. е. синтез белка, прекращается. Поэтому эти три кодона называют еще и терминирующими, т. е. приводящими к окончанию синтеза белка кодонами.

Три кодона (АУГ, ГУГ и УУГ) сигнализируют о начальной точке белкового синтеза (так наз. инициирующие, или начальные, кодоны, они отмечены в таблице звездочкой). Интересно, что свою инициирующую роль эти кодоны проявляют только в том случае, если они располагаются в начальной точке гена. В случае же, если эти три кодона находятся внутри гена, они кодируют подстановку аминокислот лейцина, метионина и валина. Все сказанное выше о терминирующих и инициирующих кодонах доказано пока лишь для микроорганизмов. Насколько все эти закономерности справедливы для высших организмов, включая человека, покажут результаты дальнейших исследований. Вместе с тем, несомненно, что общая природа Г. к., правила репликации ДНК, транскрипции ее в РНК и трансляции полученных таким путем копий генов (молекул иРНК) в молекулы белков совершаются одинаково во всех организмах на Земле.

Гепатит вирусный

Гепатит вирусный — инфекционная болезнь, при к-рой поражается преимущественно печенью. Возбудитель гепатита вирусного не выделен, но по своим свойствам относится к фильтрующимся вирусам; весьма устойчив к внешним воздействиям: при комнатной температуре сохраняет активность в течение года, на холоде — до 44/г лет, под действием прямых солнечных лучей гибнет через 1'/г часа, при кипячении —¦ через 30—40 мин. Вирус циркулирует в крови больных и вирусоносителей и выделяется с их калом в окружающую среду. Предполагают существозание двух видов вирусов. Один вызывает инфекционный гепатит (болезнь Боткина или инфекционная желтуха), другой — сывороточный гепатит. При инф. гепатите заражение происходит через загрязненные фекалиями воду, пищевые продукты, а также грязные руки и предметы домашнего обихода. Не исключается роль мух в механич. передаче вируса. Заражение сывороточным гепатитом может произойти при использовании недостаточно простерилизов-анных мед. инструментов.

В течение 3—6 нед., а иногда до 1 года, вирус, находясь в организме человека, не вызывает никаких проявлений болезни (инкубационный период). Заболевание начинается с появления слабости, быстрой утомляемости. Часто больные отмечают снижение аппетита, ощущение горечи во рту, появление отрыжки, изжоги, тошноты, рвоты, болей в животе, испражнения могут быть жидкими. Иногда первым признаком Г. в. являются кашель, насморк, головная боль, нередко — боли в мышцах и суставах. Температура повышается (иногда до 39—40°). Наблюдается потемнение мочи (по цвету она напоминает пиво или крепко заваренный чай). Кал теряет свою обычную окраску, приобретая серобелый цвет (напоминает замазку). В дальнейшем кожа и склера глаз окрашиваются в желтый цвет с оранжевым оттенком. Возможно стертое течение Г. в. без желтухи, с незначительным ухудшением общего состояния. Такие формы представляют значительную опасность: позднее обращение к врачу и несвоевременная госпитализация могут привести к затяжному течению заболевания с последующими тяжелыми осложнениями, а также создают условия для заражения окружающих. 

Лечение проводят обязательно в б-це. Своевременная госпитализация, строгий постельный режим и соблюдение всех назначений врача способствуют благоприятному исходу болезни. 

Лица, переболевшие Г. в., нуждаются в щадящем режиме. Если трудовая деятельность этих людей связана с профвредностями или тяжелой физ. нагрузкой, их временно (на срок, определяемый врачом) переводят на более легкую работу, они наблюдаются врачом в поликлинике в течение 2 лет. Вирусоносители находятся под диспансерным наблюдением вплоть до полного прекращения носительства. Каждый переболевший Г. в. должен помнить, что при несоблюдении режима и диеты, предписанных врачом, возможны осложнения, вплоть до развития цирроза печени. Необходимо избегать переутомления, перегревания, переохлаждения. В течение года запрещается участие в спорт, соревнованиях, ношение тяжестей свыше 3 кг, пребывание на южн. курортах в жаркое время года. После выписки из б-цы на протяжении б—12 мес. следует соблюдать диету с категорическим исключением спиртных напитков (включая пиво), консервов, копченостей, маринадов, острых приправ, жареных блюд, шоколада. Рекомендуется молочнорастительная диета, нежирные сорта мяса и рыбы.

Профилактика Г. в. включает обязательную госпитализацию больных, проведение дезинфекции в помещении, где он находился. За лицами, общавши- Рис. Схема органов брюшной полости, участвующих в пищеварении (желудочнокишечный тракт, поджелудочная железа и печень). Стрелкой указан поражаемый при гепатите орган (печень). мися с заболевшим, устанавливается мед. наблюдение на 45 дней. Детям с профилактич. целью вводят гаммаглобулин. Проводится контроль за учреждениями общественного питания и водоисточниками, строгое наблюдение за донорами и лицами, связанными с переработкой крови; мед. инструменты (иглы, шприцы) тщательно стерилизуются.

Генетическое равновесие

Генетическое равновесие — ситуация, при ко­торой распределение аллелей в популяции остается постоянным из поколения в поколе­ние (при отсутствии отбора или мута­ций).

Гериатрия

Гериатрия — медицинская дисциплина, занимающаяся изучением особенностей заболеваний у лиц пожилого и старческого возраста и их лечением.

Геном

Геном — полный комплект наследственных фак­торов, содержащийся в гаплоидном наборе хромосом.

Новости Кузбасса